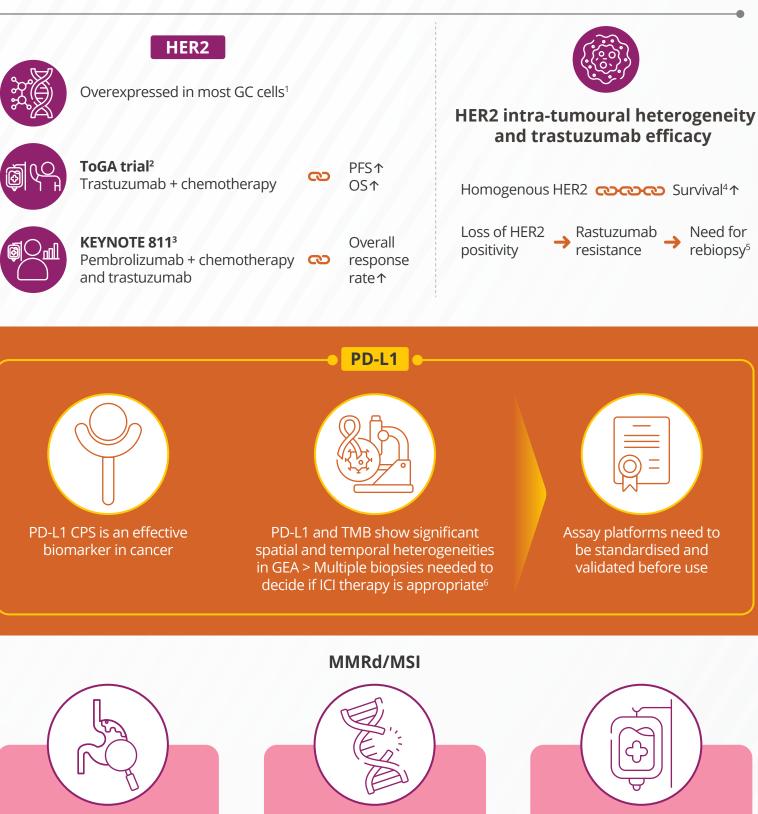

WILEY

The Evolving Therapeutic Landscape of Gastric Cancer


Clinically Useful Pathology Biomarkers

Biomarkers in gastric cancer (GC)¹

Visit https://gastric-cancer.knowledgehub.wiley.com/ for more information

Established biomarkers in GC

Prognostic and predictive biomarkers in GCs⁷

Abbreviations CPS – combined positive score | GEA – gastroesophageal adenocarcinoma | HER2 – human epidermal growth factor receptor 2 ICI – immune checkpoint inhibitor | MMRd – mismatch repair deficiency | MSI – microsatellite instability

MSI is a marker for MMRd

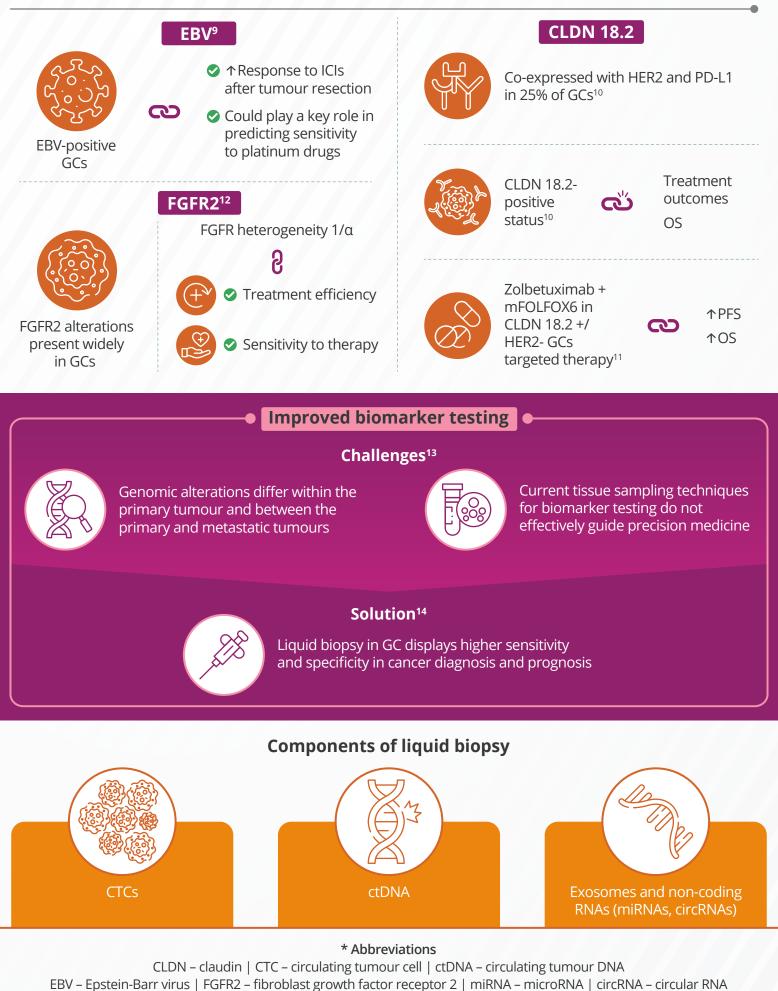
that indicates a

hypermutable state⁷

MSI and PD-L1 are robust

markers for predicting

chemotherapy benefit in


resectable GCs7,8

OS – overall survival | PD-L1 – programmed cell death ligand 1 | PFS – progression free survival

TMB – tumour mutation burden

Visit https://gastric-cancer.knowledgehub.wiley.com/ for more information

Emerging biomarkers for GC

Visit <u>https://gastric-cancer.knowledgehub.wiley.com/</u> for more information

ctDNA in advanced GC to counteract heterogeneity¹⁵

Identifies FGFR2 amplification which may be missed during tissue testing

Minimally invasive

~

May assess concurrent genomic alterations to guide treatments

Future trials that will provide more validation and evidence are underway

Understanding the pathogenesis of GCs and their correlations with available biomarkers will enable the development of new treatment strategies with improved patient outcomes

References

- 1. Sato, Y., Okamoto, K., Kawano, Y., Kasai, A., Kawaguchi, T., Sagawa, T., ... & Takayama, T. (2023). Novel biomarkers of gastric cancer: Current research and future perspectives. *Journal of Clinical Medicine*, 12(14), 4646.
- Bang, Y. J., Van Cutsem, É., Feyereislova, A., Chung, H. C., Shen, L., Sawaki, ... & Kang, Y. K. (2010). Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. *The Lancet, 376*(9742), 687–697.
- 3. Janjigian, Y. Y., Kawazoe, A., Yañez, P., Li, N., Lonardi, S., Kolesnik, O., ... & Chung, H. C. (2021). The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. *Nature, 600*(7890), 727–730.
- 4. Yagi, S., Wakatsuki, T., Yamamoto, N., Chìn, K., Takahari, D., Ogura, M., ... & Horiuchi, Y. (2018). Clinical significance of intratumoral HER2 heterogeneity on trastuzumab efficacy using endoscopic biopsy specimens in patients with advanced HER2 positive gastric cancer. *Gastric Cancer*, *22*(3), 518–525.
- 5. Pietrantonio, F., Caporale, M., Morano, F., Scartozzi, M., Gloghini, A., De Vita, F., ... & Di Bartolomeo, M. (2016). HER2 loss in HER2-positive gastric or gastroesophageal cancer after trastuzumab therapy: Implication for further clinical research. *International Journal of Cancer, 139*(12), 2859–2864.
- Zhou, K. I., Peterson, B. E., Serritella, A., Thomas, J., Reizine, N., Moya, S., ... & Catenacci, D. V. (2020). Spatial and temporal heterogeneity of PD-L1 expression and tumor mutational burden in gastroesophageal adenocarcinoma at baseline diagnosis and after chemotherapy. *Clinical Cancer Research, 26*(24), 6453–6463.
- 7. Choi, Y. Y., Kim, H., Shin, S., Kim, H. Y., Lee, J., Yang, H. K., ... & Cheong, J. (2019). Microsatellite instability and programmed cell death-ligand 1 expression in stage II/III gastric cancer. *Annals of Surgery*, 270(2), 309–316.
- Pietrantonio, F., Miceli, R., Raimondi, A., Kim, Y. W., Kang, W. K., Langley, R. E., ... & Smyth, E. (2019). Individual patient data meta-analysis of the value of microsatellite instability as a biomarker in gastric cancer. *Journal of Clinical Oncology*, 37(35), 3392–3400.
- 9. Corallo, S., Fucà, G., Morano, F., Salati, M., Spallanzani, A., Gloghini, A., ... & Di Bartolomeo, M. (2020). Clinical behavior and treatment response of Epstein-Barr Virus-Positive metastatic gastric cancer: Implications for the development of future trials. *Oncologist, 25*(9), 780–786.
- 10. Kubota, Y., Kawazoe, A., Mishima, S., Nakamura, Y., Kotani, D., Kuboki, Y., ... & Shitara, K. (2023). Comprehensive clinical and molecular characterization of claudin 18.2 expression in advanced gastric or gastroesophageal junction cancer. *ESMO Open*, *8*(1), 100762.
- Shitara, K., Lordick, F., Bang, Y., Enzinger, P. C., Ilson, D. H., Shah, M. A., ... & Ajani, J. A. (2023). Zolbetuximab + mFOLFOX6 as first-line (1L) treatment for patients (pts) with claudin-18.2+ (CLDN18.2+) / HER2– locally advanced (LA) unresectable or metastatic gastric or gastroesophageal junction (mG/GEJ) adenocarcinoma: Primary results from phase 3 SPOTLIGHT study. *Journal of Clinical Oncology*, *41*(4_suppl), LBA292.
- 12. Klempner, S. J., Madison, R., Pujara, V., Ross, J. S., Miller, V. A., Ali, S. M., ... & Chao, J. (2019). FGFR2-altered gastroesophageal adenocarcinomas are an uncommon clinicopathologic entity with a distinct genomic landscape. *Oncologist*, *24*(11), 1462–1468.
- 13. Pectasides, E., Stachler, M. D., Derks, S., Liu, Y., Maron, S. B., Islam, M., ... & Catenacci, D. V. (2018). Genomic heterogeneity as a barrier to precision medicine in gastroesophageal adenocarcinoma. *Cancer Discovery*, 8(1), 37–48.
- 14. Zhang, Z., Wu, H., Chong, W., Shang, L., Jing, C., & Li, L. (2022). Liquid biopsy in gastric cancer: Predictive and prognostic biomarkers. *Cell Death and Disease*, *13*(10), 903.
- 15. Jogo, T., Nakamura, Y., Shitara, K., Bando, H., Yasui, H., Esaki, T., ... & Yoshino, T. (2021). Circulating tumor DNA analysis detects FGFR2 amplification and concurrent genomic alterations associated with FGFR inhibitor efficacy in advanced gastric cancer. *Clinical Cancer Research*, *27*(20), 5619–5627.

