Skip to main content

Advertisement

Log in

Immunotherapy in Esophagogastric Cancer: Treatment Landscape, Challenges, and New Directions

  • Review
  • Published:
Journal of Gastrointestinal Cancer Aims and scope Submit manuscript

Abstract

Background

Cancers of the upper gastrointestinal tract represent a lethal disease entity comprising the esophagus, gastroesophageal junction, and stomach. The backbone of therapy in esophagogastric cancers has predominantly been chemotherapy-based. However, over the last decade, with the debut of immune checkpoint inhibitors, sophisticated molecular testing, and a more comprehensive understanding of the tumor microenvironment, immunotherapy has been incorporated into the treatment of localized and advanced esophagogastric cancers with promising results.

Purpose

This study aimed to review the unique tumor microenvironment and role of immunotherapy in esophagogastric cancers.

Methods

We conducted a systematic review of clinical and translational research for immunotherapy in esophagogastric cancers.

Results

This article will explore the unique tumor microenvironment in gastroesophageal cancers, the role of immunotherapy in localized and advanced disease, challenges in management, and new therapeutic approaches in clinical trials.

Conclusion

With further exploration into targeted therapy and immunotherapy, we anticipate the emergence of novel treatments that will improve survival and quality of life in patients with esophagogastric cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Wang DK, Zuo Q, He QY, Li B. Targeted immunotherapies in gastrointestinal cancer: from molecular mechanisms to implications. Front Immunol. 2021;12:705999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shimozaki K, Nakayama I, Hirota T, Yamaguchi K. Current strategy to treat immunogenic gastrointestinal cancers: perspectives for a new era. Cells. 2023;12(7).

  4. Sidaway P. Immunotherapy-responsive gastric cancers identified. Nat Rev Clin Oncol. 2018;15(10):590-.

  5. van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366(22):2074–84.

    Article  PubMed  Google Scholar 

  6. Kelly RJ, Ajani JA, Kuzdzal J, Zander T, Van Cutsem E, Piessen G, et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N Engl J Med. 2021;384(13):1191–203.

    Article  CAS  PubMed  Google Scholar 

  7. Shah MA, Bennouna J, Doi T, Shen L, Kato K, Adenis A, et al. KEYNOTE-975 study design: a Phase III study of definitive chemoradiotherapy plus pembrolizumab in patients with esophageal carcinoma. Future Oncol (London, England). 2021;17(10):1143–53.

  8. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  9. Pietrantonio F, Miceli R, Raimondi A, Kim YW, Kang WK, Langley RE, et al. Individual patient data meta-analysis of the value of microsatellite instability as a biomarker in gastric cancer. J Clin Oncol. 2019;37(35):3392–400.

    Article  PubMed  Google Scholar 

  10. Nie RC, Chen GM, Yuan SQ, Kim JW, Zhou J, Nie M, et al. Adjuvant chemotherapy for gastric cancer patients with mismatch repair deficiency or microsatellite instability: Systematic Review and Meta-Analysis. Ann Surg Oncol. 2022;29(4):2324–31.

    Article  PubMed  Google Scholar 

  11. André T, Tougeron D, Piessen G, de la Fouchardière C, Louvet C, Adenis A, et al. Neoadjuvant nivolumab plus ipilimumab and adjuvant nivolumab in localized deficient mismatch repair/microsatellite instability-high gastric or esophagogastric junction adenocarcinoma: the GERCOR NEONIPIGA phase II study. J Clin Oncol. 2023;41(2):255–65.

    Article  PubMed  Google Scholar 

  12. Pietrantonio F, Raimondi A, Lonardi S, Murgioni S, Cardellino GG, Tamberi S, et al. INFINITY: A multicentre, single-arm, multi-cohort, phase II trial of tremelimumab and durvalumab as neoadjuvant treatment of patients with microsatellite instability-high (MSI) resectable gastric or gastroesophageal junction adenocarcinoma (GAC/GEJAC). J Clin Oncol. 2023;41(4_suppl):358-.

  13. Bang YJ, Van Cutsem E, Fuchs CS, Ohtsu A, Tabernero J, Ilson DH, et al. KEYNOTE-585: Phase III study of perioperative chemotherapy with or without pembrolizumab for gastric cancer. Future oncology (London, England). 2019;15(9):943–52.

    Article  CAS  PubMed  Google Scholar 

  14. Al-Batran S-E, Lorenzen S, Thuss-Patience PC, Homann N, Schenk M, Lindig U, et al. Surgical and pathological outcome, and pathological regression, in patients receiving perioperative atezolizumab in combination with FLOT chemotherapy versus FLOT alone for resectable esophagogastric adenocarcinoma: interim results from DANTE, a randomized, multicenter, phase IIb trial of the FLOT-AIO German Gastric Cancer Group and Swiss SAKK. J Clin Oncol. 2022;40(16_suppl):4003-.

  15. Janjigian YY, Van Cutsem E, Muro K, Wainberg Z, Al-Batran SE, Hyung WJ, et al. MATTERHORN: phase III study of durvalumab plus FLOT chemotherapy in resectable gastric/gastroesophageal junction cancer. Future oncology (London, England). 2022;18(20):2465–73.

    Article  CAS  PubMed  Google Scholar 

  16. Shitara K. LBA74 Pembrolizumab plus chemotherapy vs chemotherapy as neoadjuvant and adjuvant therapy in locally-advanced gastric and gastroesophageal junction cancer: The phase III KEYNOTE-585 study. Ann Oncol. 2023;34.

  17. Al-Batran S-E, Lorenzen S, Thuss-Patience PC, Homann N, Schenk M, Lindig U, et al. A randomized, open-label, phase II/III efficacy and safety study of atezolizumab in combination with FLOT versus FLOT alone in patients with gastric cancer and adenocarcinoma of the oesophagogastric junction and high immune responsiveness: The IKF-S633/DANTE trial, a trial of AIO in collaboration with SAKK. J Clin Oncol. 2023;41(16_suppl):TPS4177-TPS.

  18. Janjigian. LBA73 - Pathological complete response (pCR) to durvalumabplus 5-fl uorouracil, leucovorin, oxaliplatin and docetaxel(FLOT) in resectable gastric and gastroesophageal junctioncancer (GC/GEJC): Interim results of the global, phase IIIMATTERHORN study. Ann Oncol. 2023.

  19. Data are still insufficient to recommend immune checkpoint inhibitors in perioperative therapy for gastric/gastro-oesophageal junction cancers [cited 2023]. Available from: https://dailyreporter.esmo.org/esmo-congress-2023/gastrointestinal-cancers/data-are-still-insufficient-to-recommend-immune-checkpoint-inhibitors-in-perioperative-therapy-for-gastric-gastro-oesophageal-junction-cancers.

  20. Yamashita K, Iwatsuki M, Harada K, Eto K, Hiyoshi Y, Ishimoto T, et al. Prognostic impacts of the combined positive score and the tumor proportion score for programmed death ligand-1 expression by double immunohistochemical staining in patients with advanced gastric cancer. Gastric Cancer. 2020;23(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  21. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018;4(5):e180013.

    Article  PubMed  PubMed Central  Google Scholar 

  22. FDA grants accelerated approval to pembrolizumab for advanced gastric cancer. 2017. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-advanced-gastric-cancer.

  23. Tucker N. Pembrolizumab withdrawn from US market as option for third-line gastric or GEJ adenocarcinoma. 2021 [November 19, 2023]. Available from: https://www.targetedonc.com/view/pembrolizumab-withdrawn-from-us-market-as-option-for-third-line-gastric-or-gej-adenocarcinoma.

  24. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.

    Article  CAS  PubMed  Google Scholar 

  25. Stagg J, Loi S, Divisekera U, Ngiow SF, Duret H, Yagita H, et al. Anti-ErbB-2 mAb therapy requires type I and II interferons and synergizes with anti-PD-1 or anti-CD137 mAb therapy. Proc Natl Acad Sci USA. 2011;108(17):7142–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janjigian YY, Kawazoe A, Yañez P, Li N, Lonardi S, Kolesnik O, et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature. 2021;600(7890):727–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Janjigian YY, Kawazoe A, Bai Y, Xu J, Lonardi S, Metges JP, et al. Pembrolizumab plus trastuzumab and chemotherapy for HER2-positive gastric or gastro-oesophageal junction adenocarcinoma: interim analyses from the phase 3 KEYNOTE-811 randomised placebo-controlled trial. Lancet. 2023.

  28. FDA amends pembrolizumab’s gastric cancer indication. 2023. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-amends-pembrolizumabs-gastric-cancer-indication.

  29. EMA adopts a positive opinion for a new indication for pembrolizumab. 2023. Available from: https://www.esmo.org/oncology-news/ema-adopts-a-positive-opinion-for-a-new-indication-for-pembrolizumab.

  30. Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): a randomised, open-label, phase 3 trial. Lancet. 2021;398(10294):27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Janjigian YY, Shitara K, Moehler MH, Garrido M, Gallardo C, Shen L, et al. Nivolumab (NIVO) plus chemotherapy (chemo) vs chemo as first-line (1L) treatment for advanced gastric cancer/gastroesophageal junction cancer/esophageal adenocarcinoma (GC/GEJC/EAC): 3-year follow-up from CheckMate 649. J Clin Oncol. 2023;41(4_suppl):291-.

  32. Opdivo: European Medicines Agency. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/opdivo.

  33. National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology (NCCN Guidelines): esophageal and esophagogastric junction cancers. Available at: https://www.nccn.org/professionals/physician_gls/pdf/esophageal.pdf. Accessed on 19 Dec 2023.

  34. Sun JM, Shen L, Shah MA, Enzinger P, Adenis A, Doi T, et al. Pembrolizumab plus chemotherapy versus chemotherapy alone for first-line treatment of advanced oesophageal cancer (KEYNOTE-590): a randomised, placebo-controlled, phase 3 study. Lancet. 2021;398(10302):759–71.

  35. FDA approves pembrolizumab for esophageal or GEJ carcinoma. 2021. Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-esophageal-or-gej-carcinoma.

  36. European Medicines Agency. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/keytruda.

  37. Tabernero J, Bang YJ, Van Cutsem E, Fuchs CS, Janjigian YY, Bhagia P, et al. KEYNOTE-859: a Phase III study of pembrolizumab plus chemotherapy in gastric/gastroesophageal junction adenocarcinoma. Future Oncol (London, England). 2021;17(22):2847–55.

    Article  CAS  Google Scholar 

  38. Rha SY, Oh DY, Yañez P, Bai Y, Ryu MH, Lee J, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2023;24(11):1181–95.

    Article  CAS  PubMed  Google Scholar 

  39. Shitara K, Van Cutsem E, Bang YJ, Fuchs C, Wyrwicz L, Lee KW, et al. Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: the KEYNOTE-062 phase 3 randomized clinical trial. JAMA Oncol. 2020;6(10):1571–80.

    Article  PubMed  Google Scholar 

  40. Zhao JJ, Yap DWT, Chan YH, Tan BKJ, Teo CB, Syn NL, et al. Low programmed death-ligand 1-expressing subgroup outcomes of first-line immune checkpoint inhibitors in gastric or esophageal adenocarcinoma. J Clin Oncol. 2022;40(4):392–402.

    Article  CAS  PubMed  Google Scholar 

  41. Doki Y, Ajani JA, Kato K, Xu J, Wyrwicz L, Motoyama S, et al. Nivolumab combination therapy in advanced esophageal squamous-cell carcinoma. N Engl J Med. 2022;386(5):449–62.

    Article  CAS  PubMed  Google Scholar 

  42. Kato K, Ajani JA, Doki Y, Xu J, Wyrwicz L, Motoyama S, et al. Nivolumab (NIVO) plus chemotherapy (chemo) or ipilimumab (IPI) vs chemo as first-line (1L) treatment for advanced esophageal squamous cell carcinoma (ESCC): 29-month (mo) follow-up from CheckMate 648. J Clin Oncol. 2023;41(4_suppl):290-.

  43. Chao I. Abstract: O-3 Nivolumab (NIVO) plus chemotherapy (chemo) or ipilimumab (IPI) vs chemo as first-line treatment for advanced esophageal squamous cell carcinoma (ESCC): Expanded efficacy and safety analyses from CheckMate 648. Ann Oncol. 2022;33.

  44. Opdivo-nivolumab injection. 2023. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=f570b9c4-6846-4de2-abfa-4d0a4ae4e394.

  45. Yervoy: ipilimumab injection. 2023. Available from: https://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=2265ef30-253e-11df-8a39-0800200c9a66.

  46. Yap DWT, Leone AG, Wong NZH, Zhao JJ, Tey JCS, Sundar R, et al. Effectiveness of immune checkpoint inhibitors in patients with advanced esophageal squamous cell carcinoma: a meta-analysis including low PD-L1 subgroups. JAMA Oncol. 2023;9(2):215–24.

    Article  PubMed  Google Scholar 

  47. Wu HX, Pan YQ, He Y, Wang ZX, Guan WL, Chen YX, et al. Clinical benefit of first-line programmed death-1 antibody plus chemotherapy in low programmed cell death ligand 1-expressing esophageal squamous cell carcinoma: a post hoc analysis of JUPITER-06 and meta-analysis. J Clin Oncol. 2023;41(9):1735–46.

    Article  CAS  PubMed  Google Scholar 

  48. Yoon HH, Jin Z, Kour O, Kankeu Fonkoua LA, Shitara K, Gibson MK, et al. Association of PD-L1 expression and other variables with benefit from immune checkpoint inhibition in advanced gastroesophageal cancer: systematic review and meta-analysis of 17 phase 3 randomized clinical trials. JAMA Oncol. 2022;8(10):1456–65.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Shitara K, Ajani JA, Moehler M, Garrido M, Gallardo C, Shen L, et al. Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature. 2022;603(7903):942–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yoon HH, Dong H, Shi Q. Impact of PD-1 blockade in nonresponders: pitfalls and promise. Clin Cancer Res. 2022;28(15):3173–5.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Chao J, Fuchs CS, Shitara K, Tabernero J, Muro K, Van Cutsem E, et al. Assessment of pembrolizumab therapy for the treatment of microsatellite instability-high gastric or gastroesophageal junction cancer among patients in the KEYNOTE-059, KEYNOTE-061, and KEYNOTE-062 clinical trials. JAMA Oncol. 2021;7(6):895–902.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Maio M, Ascierto PA, Manzyuk L, Motola-Kuba D, Penel N, Cassier PA, et al. Pembrolizumab in microsatellite instability high or mismatch repair deficient cancers: updated analysis from the phase II KEYNOTE-158 study. Ann Oncol. 2022;33(9):929–38.

    Article  CAS  PubMed  Google Scholar 

  53. Robert ME, Rüschoff J, Jasani B, Graham RP, Badve SS, Rodriguez-Justo M, et al. High interobserver variability among pathologists using combined positive score to evaluate PD-L1 expression in gastric, gastroesophageal junction, and esophageal adenocarcinoma. Mod Pathol. 2023;36(5): 100154.

    Article  PubMed  Google Scholar 

  54. Zhou KI, Peterson B, Serritella A, Thomas J, Reizine N, Moya S, et al. Spatial and temporal heterogeneity of PD-L1 expression and tumor mutational burden in gastroesophageal adenocarcinoma at baseline diagnosis and after chemotherapy. Clin Cancer Res. 2020;26(24):6453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ye M, Huang D, Zhang Q, Weng W, Tan C, Qin G, et al. Heterogeneous programmed death-ligand 1 expression in gastric cancer: comparison of tissue microarrays and whole sections. Cancer Cell Int. 2020;20:186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pihlak R, Fong C, Starling N. Targeted therapies and developing precision medicine in gastric cancer. Cancers (Basel). 2023;15(12).

  57. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018;24(9):1449–58.

    Article  CAS  PubMed  Google Scholar 

  58. Nakano H, Saito M, Nakajima S, Saito K, Nakayama Y, Kase K, et al. PD-L1 overexpression in EBV-positive gastric cancer is caused by unique genomic or epigenomic mechanisms. Sci Rep. 2021;11(1):1982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513(7517):202–9.

    Article  Google Scholar 

  60. Cristescu R, Lee J, Nebozhyn M, Kim KM, Ting JC, Wong SS, et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med. 2015;21(5):449–56.

    Article  CAS  PubMed  Google Scholar 

  61. Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, Thiery JP, et al. New insights into the role of EMT in tumor immune escape. Mol Oncol. 2017;11(7):824–46.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chen Y, Jia K, Sun Y, Zhang C, Li Y, Zhang L, et al. Predicting response to immunotherapy in gastric cancer via multi-dimensional analyses of the tumour immune microenvironment. Nat Commun. 2022;13(1):4851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haas MS, Kagey MH, Heath H, Schuerpf F, Rottman JB, Newman W. mDKN-01, a novel anti-DKK1 mAb, enhances innate immune responses in the tumor microenvironment. Mol Cancer Res. 2021;19(4):717–25.

    Article  CAS  PubMed  Google Scholar 

  64. Klempner SJ, Sonbol BB, Wainberg ZA, Uronis HE, Chiu VK, Scott AJ, et al. A phase 2 study (DisTinGuish) of DKN-01 in combination with tislelizumab + chemotherapy as first-line (1L) therapy in patients with advanced gastric or GEJ adenocarcinoma (GEA). J Clin Oncol. 2023;41(16_suppl):4027-.

  65. Shitara K, Lordick F, Bang YJ, Enzinger P, Ilson D, Shah MA, et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): a multicentre, randomised, double-blind, phase 3 trial. Lancet. 2023;401(10389):1655–68.

  66. Shah MA, Shitara K, Ajani JA, Bang YJ, Enzinger P, Ilson D, et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: the randomized, phase 3 GLOW trial. Nat Med. 2023;29(8):2133–41.

  67. Klempner SJ, Lee KW, Shitara K, Metges JP, Lonardi S, Ilson DH, et al. ILUSTRO: phase II multicohort trial of zolbetuximab in patients with advanced or metastatic Claudin 18.2-positive gastric or gastroesophageal junction adenocarcinoma. Clin Cancer Res. 2023;29(19):3882–91.

  68. Zhang M, Gong J, Wang J, Shi J, Zhu H, Wang Y, et al. A phase I/II study of ASKB589 (anti-claudin 18.2 [CLDN18.2] monoclonal antibody) in patients with solid tumors. J Clin Oncol. 2023;41:397-.

  69. A trial to evaluate safety, tolerability, pharmacokinetics and preliminary efficacy of TST001 in advanced or metastatic solid tumors. ClinicalTrials.gov identifier: NCT04495296. Updated March 3, 2023. Accessed on 19 Dec 2023. https://www.clinicaltrials.gov/study/NCT04495296?term=NCT04495296&rank=1.

  70. A trial to evaluate safety and tolerability of TST001 in advanced or metastatic solid tumors. ClinicalTrials.gov identifier: NCT04396821. Updated December 13, 2023. Accessed on 19 Dec 2023. https://www.clinicaltrials.gov/study/NCT04396821?term=NCT04396821&rank=1.

  71. Gao J, Wang Z, Jiang W, Zhang Y, Meng Z, Niu Y, et al. CLDN18.2 and 4–1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation. J Immunother Cancer. 2023;11(6).

  72. I-Mab announces first patient dosed in phase 1 clinical trial of Claudin 18.2 and 4–1BB bispecific antibody TJ-CD4B in solid tumors in China: I-Mab Biopharma. 2022. Available from: https://www.i-mabbiopharma.com/i-mab-announces-first-patient-dosed-in-phase-1-clinical-trial-of-claudin-18-2-and-4-1bb-bispecific-antibody-tj-cd4b-in-solid-tumors-in-china/.

  73. Study of TJ033721 in subjects with advanced or metastatic solid tumors. ClinicalTrials.gov identifier NCT04900818. Updated June 22, 2023. Accesed on 19 Dec 2023. https://clinicaltrials.gov/study/NCT04900818?cond=TJ033721&rank=1#study-plan.

  74. PT886 for treatment of patients with advanced gastric, gastroesophageal junction and pancreatic adenocarcinomas. ClinicalTrials.gov identifier: NCT05482893. Updated June 15, 2023. Accessed on 19 Dec 2023. https://clinicaltrials.gov/study/NCT05482893?term=NCT05482893&rank=1.

  75. Xu R. A phase 1a dose-escalation, multicenter trial of anti-claudin 18.2 antibody drug conjugate CMG901 in patients with resistant/refractory solid tumors. J Clin Oncol. 2023;41(4_suppl):352-.

  76. Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: phase 1 trial interim results. Nat Med. 2022;28(6):1189–98.

  77. Botta GP, Becerra CR, Jin Z, Kim DW, Zhao D, Lenz H-J, et al. Multicenter phase Ib trial in the U.S. of salvage CT041 CLDN18.2-specific chimeric antigen receptor T-cell therapy for patients with advanced gastric and pancreatic adenocarcinoma. J Clin Oncol. 2022;40(16_suppl):2538-.

  78. Janjigian YY, Oh D-Y, Pelster M, Wainberg ZA, Sison EAR, Scott JR, et al. EDGE-Gastric Arm A1: phase 2 study of domvanalimab, zimberelimab, and FOLFOX in first-line (1L) advanced gastroesophageal cancer. J Clin Oncol. 2023;41(36_suppl):433248-.

  79. A clinical trial of a new combination treatment, domvanalimab and zimberelimab, plus chemotherapy, for people with an upper gastrointestinal tract cancer that cannot be removed with surgery that has spread to other parts of the body (STAR-221).

  80. Wainberg ZA, Enzinger PC, Kang Y-K, Yamaguchi K, Qin S, Lee K-W, et al. Randomized double-blind placebo-controlled phase 2 study of bemarituzumab combined with modified FOLFOX6 (mFOLFOX6) in first-line (1L) treatment of advanced gastric/gastroesophageal junction adenocarcinoma (FIGHT). J Clin Oncol. 2021;39(3_suppl):160-.

  81. Xiang H, Chan AG, Ahene A, Bellovin DI, Deng R, Hsu AW, et al. Preclinical characterization of bemarituzumab, an anti-FGFR2b antibody for the treatment of cancer. MAbs. 2021;13(1):1981202.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wainberg ZA, Cutsem EV, Moehler MH, Kang Y-K, Yen P, Finger E, et al. Trial in progress: phase 1b/3 study of bemarituzumab + mFOLFOX6 + nivolumab versus mFOLFOX6 + nivolumab in previously untreated advanced gastric and gastroesophageal junction (GEJ) cancer with FGFR2b overexpression (FORTITUDE-102). J Clin Oncol. 2022;40(16_suppl):TPS4165-TPS.

  83. Kwilas AR, Donahue RN, Tsang KY, Hodge JW. Immune consequences of tyrosine kinase inhibitors that synergize with cancer immunotherapy. Cancer Cell Microenviron. 2015;2(1).

  84. Yanez PE, Ben-Aharon I, Rojas C, Eyzaguirre DA, Hubert A, Araya H, et al. First-line lenvatinib plus pembrolizumab plus chemotherapy versus chemotherapy in advanced/metastatic gastroesophageal adenocarcinoma (LEAP-015): safety run-in results. J Clin Oncol. 2023;41(4_suppl):411-.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript. Material preparation, data collection and analysis were performed by N.B.B. and S.S.K. The first draft of the manuscript was written by N.B.B. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sunnie S. Kim.

Ethics declarations

Conflict of Interest

S.S.K has served on advisory boards for Merck, Eisai, Bristol Myers Squibb,, Daiichi Sankyo and received research funding from Merck.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balmaceda, N.B., Kim, S.S. Immunotherapy in Esophagogastric Cancer: Treatment Landscape, Challenges, and New Directions. J Gastrointest Canc 55, 153–167 (2024). https://doi.org/10.1007/s12029-023-01000-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12029-023-01000-8

Keywords

Navigation